Skip to main content
  • About ELGA
    • About ELGA
    • Ultrapure water
    • Purification Technologies
    • Impurities In Water
    • Guides & White Papers
    • Approved Partners
    • Sustainability
    • Reducing Clinical Risks
    • Careers
    • Events
    • HPLC in Pharma
    • HPLC Water Purity
  • Blog
    • Analytical Chemistry
    • Clinical & Pharma
    • Cool Science
    • Environment and sustainability
    • Life in the lab
    • Purelab product design
    • Science of the future
    • Water Purity
    • Water in the lab
  • Contact
  • Deutsch
  • Español
  • Français
  • Italiano
  • Português
  • 日本語
  • 中文
Home ELGA LabWater
  • Products
  • Applications
  • Case Studies
  • Support
  • Products
    • PURELAB
    • CENTRA
    • MEDICA
    • BIOPURE
    • ELGA Full Product Range
  • Applications
  • Case Studies
    • Unlocking the secrets of the Antarctic with the aid of ultrapure water
    • Abbott Diagnostics chooses ELGA MEDICA systems in South Asia
    • Ca’Foscari University- A New Method for Investigating Environmental Tracers in Ice
    • Ca’Foscari University- Investigating Contaminants in Antarctic Ice
    • DASA: The biggest medical diagnostics company in Brazil
    • ELGA helps immuneserology labs maximize uptime
    • Importance of ultrapure Type 1+ water for the development of generic medicines
    • MEDICA® Pro selected for Siemens ADVIA® analyzers at City General Hospital
    • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
    • PURELAB® flex: an ideal training system for today's research method
    • Sichere Reinstwasserversorgung für präzise Produkttests
    • Zentrale Reinstwasser-Aufbereitung für Analyser
  • Support
    • Support & Services
    • Laboratory Planning
    • Register a Product
    • Register Your Product (USA & Canada Only)
  • Products
    • PURELAB
      • PURELAB Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB Chorus 2+
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® flex 1 & 2
      • PURELAB® flex 3 & 4
    • CENTRA
      • CENTRA® 60/120
      • CENTRA® RDS
      • CENTRA® R200
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® EDI 15/30
      • MEDICA® Pro EDI 60/120
      • MEDICA® Pro-LPS
      • MEDICA® Pro-R and Pro-RE
      • MEDICA® R200
    • BIOPURE
      • BIOPURE 7/15
      • BIOPURE 60/120
      • BIOPURE 200/300/600
    • ELGA Full Product Range
      • PURELAB® Classic
  • Applications
  • Case Studies
    • Unlocking the secrets of the Antarctic with the aid of ultrapure water
    • Abbott Diagnostics chooses ELGA MEDICA systems in South Asia
    • Ca’Foscari University- A New Method for Investigating Environmental Tracers in Ice
    • Ca’Foscari University- Investigating Contaminants in Antarctic Ice
    • DASA: The biggest medical diagnostics company in Brazil
    • ELGA helps immuneserology labs maximize uptime
    • Importance of ultrapure Type 1+ water for the development of generic medicines
    • MEDICA® Pro selected for Siemens ADVIA® analyzers at City General Hospital
    • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
    • PURELAB® flex: an ideal training system for today's research method
    • Sichere Reinstwasserversorgung für präzise Produkttests
    • Zentrale Reinstwasser-Aufbereitung für Analyser
  • Support
    • Support & Services
    • Laboratory Planning
    • Register a Product
    • Register Your Product (USA & Canada Only)
  • Deutsch
  • Español
  • Français
  • Italiano
  • Português
  • 日本語
  • 中文
  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum

Let's talk about lab water

  • Categories
    • Analytical Chemistry
    • Clinical & Pharma
    • Cool Science
    • Environment & Sustainability
    • Future Science
    • Life in The Lab
    • PURELAB Product Design
    • Science of the Future
    • Water In The Lab
    • Water Purity
  • Authors
    • ELGA Editorial Team
    • Natasha Zarach
    • Dr Paul Whitehead
    • Dr Alison Halliday
    • John Walker
Analytical Chemistry
Science of the Future

An Ultra-Sensitive New DNA Sensor for Detecting and Diagnosing Genetic Diseases

30 Apr 2019
- by Dr Alison Halliday

DNA

Precision Medicine will Require Ultrasensitive Methods for Detecting Specific DNA Changes

A new strategy allows the direct detection of ultralow levels of target-DNA while simultaneously enabling excellent discrimination of single nucleotide polymorphisms (SNPs). We are moving into a new era of precision medicine where clinical decisions are based on our ever-increasing knowledge of the molecular causes of disease. To support this, we will need increasingly sensitive techniques that can detect specific DNA sequence alterations (single nucleotide polymorphism - SNPs) – as well as discriminate and quantitate these within complex mixtures containing thousands of copies of the normal gene sequence. For example, if we can accurately and reliably detect trace levels of mutated tumour DNA within a blood sample, this could enable the earlier detection of cancer before metastasis occurs.

The most common methods that are currently for SNP detection involve DNA amplification, usually using the polymerase chain reaction (PCR). However, this step can be susceptible to contamination or amplification bias, limiting its detection and quantification accuracy. So the development of new methods that can provide rapid, ultrasensitive SNP detection without the need for PCR amplification would be highly advantageous. Over the past two decades, several new DNA sensing methods have been reported – but most display either relatively low SNP discrimination and/or insufficient sensitivity, limiting their potential for use in real-life applications.

A Sensitive New Method Involving Magnetic Nanoparticles

In a new study, researchers develop a sensitive new method combining magnetic nanoparticles (MNPs) capture and poly-enzyme nanobead amplification for detecting and discriminating SNPs.1 The technique uses an MNP linked capture-DNA and a biotinylated signal-DNA to sandwich the target followed by ligation to offer high SNP discrimination: only the perfect-match target-DNA yields a covalently linked biotinylated signal-DNA on the MNP surface for subsequent binding of a covalently linked horseradish peroxidase conjugate (NAV-HRP) for signal amplification. To further improve sensitivity, the assay also incorporates a powerful signal amplification strategy involving polymer nanobeads each tagged with thousands of copies of HRPs, allowing for direct, amplification-free quantification of minute levels of target DNA. 

Detecting a Common Cancer Mutation

The team tested their new sensing strategy to detect mutations in the KRAS gene, which is commonly mutated in many different cancers – including bowel, pancreatic and lung. The researchers used it to test for three target DNAs: the normal sequence (17C), and two common cancer mutations: 17C to T and 17C to A. The researchers showed the new technique offers excellent discrimination between the perfect-match gene and its cancer-related SNPs and can detect 1 fM of the normal DNA even in the presence of 100-fold excess of the SNP targets – a level of specificity among the very best sensors reported so far. They also demonstrated that the method works robustly in clinically relevant situations – in samples containing 10 percent human serum.

The researchers used sterilized ultrapure water generated by an ELGA PURELAB® flex water purification system throughout all experiments, reducing the risk of introducing contaminants that could affect the success of these highly sensitive techniques.This new ultrasensitive DNA sensor appears to have excellent potential for rapid detection and diagnosis of genetic diseases. Future work will now focus on extending this method to ultrasensitive detection of cancer-related SNPs and explore its application in clinical samples.

Why Choose ELGA LabWater?

We are the LabWater Specialists, for over 80 years we have been working with scientists to guarantee pure and ultrapure water for their experiments and lab work. Laboratories around the world trust our water purification systems to help their researchers to achieve accurate, reliable results.


Reference:

1.    Lapitan, D. S. Jr et al. Combining magnetic nanoparticle capture and poly-enzyme nanobead amplification for ultrasensitive detection and discrimination of DNA single nucleotide polymorphisms. Nanoscale DOI: 10.1039/c8nr07641c 
 

Dr Alison Halliday
After completing an undergraduate degree in Biochemistry & Genetics at Sheffield University, Alison was awarded a PhD in Human Molecular Genetics at the University of Newcastle. She carried out five years as a Senior Postdoctoral Research Fellow at UCL, investigating the genes involved in childhood obesity syndrome. Moving into science communications, she spent ten years at Cancer Research UK engaging the public about the charity’s work. She now specialises in writing about research across the life sciences, medicine and health.

 

Highlights

18 Jan 2021
Forensic Toxicological Analysis Of Cannabinoids In Blood
14 Dec 2020
Developing Batteries Powered by Human Urine 
23 Nov 2020
Improving the Treatment of Diabetic Foot Infections
16 Nov 2020
Does The Type Of Wine Fermentation Vessel Matter?
9 Nov 2020
Investigating ‘DNA Vaccines’ to Prevent Hepatitis B Infection
12 Oct 2020
Printing Personalised Medical Cannabis Products
5 Oct 2020
Can Microscopic Needles Help Treat Skin Cancer?
21 Sep 2020
Turning Mushrooms into Versatile Materials

Categories

  • Analytical Chemistry
  • Clinical & Pharma
  • Cool Science
  • Environment & Sustainability
  • Future Science
  • Life in The Lab
  • PURELAB Product Design
  • Science of the Future
  • Water In The Lab
  • Water Purity

Video

  • Enquiry
  • Get a Quote
  • Book a Demo
  • Find an Approved Partner

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Get a Quote

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Book a Demo

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater Head Quarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

The Ultrapure Water Specialists

  • Support & Services
  • Events

Case Studies

  • Abbott Diagnostics
  • DASA Medical Diagnostics
  • NeoDIN Medical Institute
  • North Staffordshire NHS Trust
  • Olsberg Vocational College

Resources

  • Learn About Ultrapure Water
  • Guides and White Papers
  • Purification Technologies
  • Applications
  • Impurities In Water

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?
  • Language
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Other Veolia Sites
    • Veolia
    • Veolia Fondation
    • Veolia Water Technologies

© VWS (UK) Ltd. trading as ELGA LabWater. 2021 - All rights reserved.
ELGA is the global laboratory water brand name of Veolia.

  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum
Elga Veolia
TOP

© 2017 ELGA Veolia