Skip to main content
  • Where to buy
  • Company
    • About us
    • Careers
    • Events
  • Support
    • Laboratory Planning
    • Register a Product
    • Register Your Product (USA & Canada Only)
  • Contact
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
Home ELGA LabWater
  • Products
    • PURELAB
    • CENTRA
    • MEDICA
    • BIOPURE
    • ELGA Full Product Range
  • Applications
    • Atomic Absorption Spectroscopy
    • Cell and Tissue Culture
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
    • Case Studies
    • Ultrapure water
    • Guides and White Papers
  • Products
    • PURELAB
    • CENTRA
    • MEDICA
      • Hubgrade
      • MEDICA BIOX
    • BIOPURE
    • ELGA Full Product Range
      • PURELAB® Classic
  • Applications
    • Atomic Absorption Spectroscopy
    • Cell and Tissue Culture
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
      • Hochleistungsflüssigkeitschromatographie (HPLC)
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
      • Analytical Chemistry
      • Clinical & Pharma
      • Cool Science
      • Environment and sustainability
      • Life in the lab
      • Purelab product design
      • Science of the future
      • Water Purity
      • Water in the lab
    • Case Studies
      • Abbott Diagnostics chooses ELGA MEDICA systems in South Asia
      • Beam Me Up, Scotty: PURELAB® Option Q Delivers Essential Ultra Pure Water
      • Argenta chooses DKSH New Zealand to deliver Ultrapure water in Animal Pharma
      • Clean Water for a Clean Future
      • LS Scientific & ELGA deliver UltraPure water to the NAFDAC Laboratory
      • Lifebrain Group chooses ELGA as water partner for new modern 24/7 PCR-COVID-19 laboratory in Vienna, Austria.
      • Critital Tests Benefit from PURELAB® Option Reliable Pure Water
      • DASA: The biggest medical diagnostics company in Brazil
      • ELGA helps immuneserology labs maximize uptime
      • Fondazione Telethon Continues to Choose ELGA Labwater as a Trusted Partner
      • Importance of ultrapure Type 1+ water for the development of generic medicines
      • MEDICA® Pro selected for Siemens ADVIA® analyzers at City General Hospital
      • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
      • PURELAB® Option R Guarantees Pure Water for Leading Microfluidics Technology
      • PURELAB® Pulse Delivers Reliable Water Quality and Quantity for a Wide Range of Applications
      • PURELAB® flex: an ideal training system for today's research method
      • Powering Cutting-Edge Gene Research
      • Sichere Reinstwasserversorgung für präzise Produkttests
      • Zentrale Reinstwasser-Aufbereitung für Analyser
      • ELGA LabWater and Beckman Coulter Join Forces
      • Applied New Technologies Department Improves ICP, IC & HPLC Sample Turnaround Times with PURELAB®
      • Unlocking the secrets of the Antarctic with the aid of ultrapure water
      • Advancing Genetic Technologies
      • Cross Infection Control: Pure and Simple
      • Researching effective new ways to prevent cardiovascular disease at the University of Columbia
    • Ultrapure water
    • Guides and White Papers
      • HPLC Water Purity
      • HPLC in Pharma
      • Reducing Clinical Risks
      • Sustainability
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum

Let's talk about lab water

  • Categories
    • Analytical Chemistry
    • Biotechnology
    • Clinical & Pharma
    • Cool Science
    • Environment & Sustainability
    • Future Science
    • Life in The Lab
    • Life Science Results
    • PURELAB Product Design
    • Science of the Future
    • Water In The Lab
    • Water Purity
  • Authors
    • ELGA Editorial Team_cloned
    • ELGA Editorial Team
    • Natasha Zarach
    • Dr Paul Whitehead
    • Dr Alison Halliday
    • John Walker
Environment & Sustainability

Measuring the effects of indoor air pollution

16 Jan 2023
- by Dr Alison Halliday

Measuring the effects of indoor air pollution


Researchers set out a new approach for studying the risk of chronic exposure to potentially toxic indoor air on human health.

Poor indoor air quality is potentially a greater health risk than outdoor pollution as we spend about 90% of time indoors – such as at home, school, work or visiting shops or restaurants. Chronic exposure to poor-quality indoor air has been linked to lung diseases like asthma and lung cancer, heart diseases and stroke. Children are particularly vulnerable to poor indoor air quality because their lungs are still developing.


Indoor air pollution is dust, dirt or gases in the air inside buildings that could be harmful to breathe in. The main sources of these unwanted pollutants are building and cleaning materials, furnishings, electronic equipment – and combustion from burning fuels (such as gas stoves and wood burners), tobacco or candles.

Typically, indoor air contains a complex mixture of many different chemicals at low concentrations. But while the amount of each substance may be negligible and cause no adverse health effects, in combination they may pose a risk to human health. But most studies of indoor air quality are currently focussed on measuring the concentration of individual substances.

A holistic approach

In a new study, published in Current Research in Toxicology, researchers used several methods to assess the potential overall toxicity and health hazard of indoor air.1

The researchers collected a total of 40 water samples condensed from indoor air from different facilities in Finland – including homes, public buildings, offices and schools. They applied a series of different tests on the samples to assess their biological effects. They also measured the concentrations of 25 volatile organic compounds (VOCs) and Genapol X-80 (a chemical that is widely used in cleaning products) suspected to be present – as well as performing a ‘total chemical scan’ for the presence of any unknown substances.

The team could not detect the defined VOCs or Genapol X-80 in the indoor air samples, yet they identified several adverse biological effects including cytoxicity, immunotoxicity, skin sensitisation and hormone disruption. They also found a larger number of unknown chemicals in the cytotoxic samples than in the non-cytotoxic samples, further supporting the validity of the selected biological methods.

The researchers used ultrapure water generated from an ELGA PURELAB® laboratory water purification system for all chemical analyses, minimising the risk of introducing contaminants that may affect their results.

Monitoring complexity

This study highlights the extensive complexity of assessing the safety of indoor air condensates, which are typically a mixture of many chemicals at extremely low concentrations. The results confirm that assessing the toxicity of indoor air by the analysis of individual substances is an inadequate approach. In the case of such complex samples, it is more appropriate to consider them as unknown mixtures and to monitor their overall toxicological profile.

Why choose ELGA LabWater

ELGA LabWater has been a trusted name in pure and ultrapure water since 1937. Our dedication to ultrapure and pure water is a guarantee that we will continue to provide the best solutions with the best service.

 

Reference:

  1. Marika, M. et al. New approach methods for assessing indoor air toxicity. Curr Res Toxicol. 2022; Oct 13;3:100090. doi: 10.1016/j.crtox.2022.100090

 

 

Dr Alison Halliday

After completing an undergraduate degree in Biochemistry & Genetics at Sheffield University, Alison was awarded a PhD in Human Molecular Genetics at the University of Newcastle. She carried out five years as a Senior Postdoctoral Research Fellow at UCL, investigating the genes involved in childhood obesity syndrome. Moving into science communications, she spent ten years at Cancer Research UK engaging the public about the charity’s work. She now specialises in writing about research across the life sciences, medicine and health.

 

 

Highlights

16 Jan 2023
Measuring the effects of indoor air pollution
10 Jan 2023
A novel approach to wound healing
12 Dec 2022
3D bioprinting probiotics capsules
4 Nov 2022
Wie mikrobielle Brennstoffzellen zur Lösung von zwei dringenden globalen Umweltproblemen beitragen könnten
24 Oct 2022
New ‘designer drug’ identified in e-cigarettes
6 Oct 2022
Curcumin-beladene Nanopartikel ermöglichen neue Behandlung von Lungenkrebs
3 Oct 2022
Controlling pathogens using natural grapevines extracts
22 Sep 2022
Measuring indigestible sugars in breast milk

Categories

  • Analytical Chemistry
  • Biotechnology
  • Clinical & Pharma
  • Cool Science
  • Environment & Sustainability
  • Future Science
  • Life in The Lab
  • Life Science Results
  • PURELAB Product Design
  • Science of the Future
  • Water In The Lab
  • Water Purity

Video

  • Enquiry
  • Get a Quote
  • Book a Demo
  • Find an Approved Partner

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Get a Quote

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Book a Demo

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Headquarters

ELGA LabWater North America
5 Earl Ct Suite 100
Woodridge, IL 60517
USA

Tel: 630-343-5251

ELGA LabWater UK Headquarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

Case Studies

  • Abbott Diagnostics
  • DASA Medical Diagnostics
  • NeoDIN Medical Institute
  • North Staffordshire NHS Trust
  • Olsberg Vocational College

Resources

  • Learn About Ultrapure Water
  • Guides and White Papers
  • Purification Technologies
  • Applications
  • Impurities In Water

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?
  • Language
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Other Veolia Sites
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies

© VWS (UK) Ltd. trading as ELGA LabWater. 2023 - All rights reserved.
ELGA is the global laboratory water brand name of Veolia.

  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum
Elga Veolia
TOP

© 2017 ELGA Veolia