Skip to main content
  • Where to buy
  • Company
    • About us
    • Careers
    • Events
  • Support
    • Laboratory Planning
    • Register a Product
    • Register Your Product (USA & Canada Only)
  • Contact
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
Home ELGA LabWater
  • Products
    • PURELAB
    • CENTRA
    • MEDICA
    • BIOPURE
    • ELGA Full Product Range
  • Applications
    • Atomic Absorption Spectroscopy
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
    • Case Studies
    • Ultrapure water
    • Guides and White Papers
  • Products
    • PURELAB
    • CENTRA
    • MEDICA
      • Hubgrade
      • MEDICA BIOX
    • BIOPURE
    • ELGA Full Product Range
      • PURELAB® Classic
  • Applications
    • Atomic Absorption Spectroscopy
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
      • Hochleistungsflüssigkeitschromatographie (HPLC)
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
      • Analytical Chemistry
      • Clinical & Pharma
      • Cool Science
      • Environment and sustainability
      • Life in the lab
      • Purelab product design
      • Science of the future
      • Water Purity
      • Water in the lab
    • Case Studies
      • Abbott Diagnostics chooses ELGA MEDICA systems in South Asia
      • Beam Me Up, Scotty: PURELAB® Option Q Delivers Essential Ultra Pure Water
      • Argenta chooses DKSH New Zealand to deliver Ultrapure water in Animal Pharma
      • Clean Water for a Clean Future
      • LS Scientific & ELGA deliver UltraPure water to the NAFDAC Laboratory
      • Lifebrain Group chooses ELGA as water partner for new modern 24/7 PCR-COVID-19 laboratory in Vienna, Austria.
      • Critital Tests Benefit from PURELAB® Option Reliable Pure Water
      • DASA: The biggest medical diagnostics company in Brazil
      • ELGA helps immuneserology labs maximize uptime
      • Fondazione Telethon Continues to Choose ELGA Labwater as a Trusted Partner
      • Importance of ultrapure Type 1+ water for the development of generic medicines
      • MEDICA® Pro selected for Siemens ADVIA® analyzers at City General Hospital
      • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
      • PURELAB® Option R Guarantees Pure Water for Leading Microfluidics Technology
      • PURELAB® Pulse Delivers Reliable Water Quality and Quantity for a Wide Range of Applications
      • PURELAB® flex: an ideal training system for today's research method
      • Powering Cutting-Edge Gene Research
      • Sichere Reinstwasserversorgung für präzise Produkttests
      • Zentrale Reinstwasser-Aufbereitung für Analyser
      • ELGA LabWater and Beckman Coulter Join Forces
      • Applied New Technologies Department Improves ICP, IC & HPLC Sample Turnaround Times with PURELAB®
      • Unlocking the secrets of the Antarctic with the aid of ultrapure water
      • Advancing Genetic Technologies
      • Cross Infection Control: Pure and Simple
      • Researching effective new ways to prevent cardiovascular disease at the University of Columbia
    • Ultrapure water
    • Guides and White Papers
      • HPLC Water Purity
      • HPLC in Pharma
      • Reducing Clinical Risks
      • Sustainability
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum

Let's talk about lab water

  • Categories
    • Analytical Chemistry
    • Clinical & Pharma
    • Cool Science
    • Environment & Sustainability
    • Future Science
    • Life in The Lab
    • PURELAB Product Design
    • Science of the Future
    • Water In The Lab
    • Water Purity
  • Authors
    • ELGA Editorial Team
    • Natasha Zarach
    • Dr Paul Whitehead
    • Dr Alison Halliday
    • John Walker
Clinical & Pharma

Evaluating Blood - Compatible Polymers for Medical Devices - Japan

1 Nov 2021
- by ELGA Editorial Team

Health care, Blood test Japan

The synthetic polymer poly(2-methoxyethyl acrylate) (PMEA) is of considerable interest to the medical device sector, due to its excellent blood compatibility and unusual interaction with water.

Researchers at Kyushu University and Yamagata University in Japan have been exploring the interfaces between PMEA analogues and water or phosphate-buffered saline, using atomic force microscopy to learn more about the adsorption of proteins, which contributes to adverse reactions to medical devices.

The medical world makes good use of artificial blood vessels, catheters and stents. These are manufactured from materials that have been carefully chosen to minimise the likelihood of the patient developing a blood clot as a result of the insertion. The challenge for manufacturers of medical devices is that blood coming into contact with a foreign material – such as an implanted medical device – activates the body’s biological defence systems, including the complement cascade, blood coagulation and inflammatory responses. As a result, medical devices require a high degree of antithrombogenicity to minimise the possibility of a blood clot forming on the material surface. 

Biological reactions to medical devices are triggered by the adsorption of proteins on the material surface, leading researchers to study the amount, composition, distribution, conformation and orientation of adsorbed proteins, as well as interfacial parameters such as the wettability, surface potential, topography, molecular mobility and hydration of the material surface. PMEA, a synthetic polymer with excellent blood compatibility, is of particular interest to the medical sector due to its unusual interaction with water. Water interacting with PMEA is classified into three separate states: free, freezing-bound (intermediate) and non-freezing. Adsorption and conformational alteration to proteins on PMEA-type polymers are inhibited when the proportion of intermediate water increases compared to free and non-freezing water. This intermediate state water has also been identified during interactions with a number of other blood-compatible synthetic polymers – including polyethylene glycol (PEG) and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) – as well as biopolymers such as proteins and polysaccharides. 

Researchers at the Graduate School of Engineering and the Institute for Materials Chemistry and Engineering at Kyushu University, Fukuoka, and the Frontier Center for Organic System Innovations, Yamagata University, Yamagata, have explored the interfaces between PMEA analogues and water or phosphate-buffered saline (PBS) using atomic force microscopy (AFM). Alongside this, they also studied the relationship between the interfacial structures and adsorption of fibrinogen, which is one of the main components in plasma and plays an important role as a scaffold in the formation of blood clots.1

Sample Preparation and Analysis

Polymer solutions (0.2 % w/v polymer/solvent) were prepared by dissolving PMEA in methanol and poly(butylacrylate) (PBA) in ethanol. Polyethylene terephthalate (PET) substrates were rinsed in ethanol and dried at room temperature for one hour, before spin-coating the PET twice with the polymer. The sessile water droplet was comprised of purified water from an ELGA Labwater PURELAB® system. Polymer/PBS interfaces at 37 °C were observed using AFM. Adsorbed fibrinogen was determined using a micro-BCA assay, and the degree of conformational change on the polymer interface was assessed using ELISA, monitoring absorbance at 570 and 405 nm respectively. The interaction between the adsorbed fibrinogen and the polymer interfaces was measured using AFM.

The Results

The amount of adsorbed fibrinogen and exposure of the gamma chain on a PMEA surface were much lower than those on PBA. AFM was used to measure the interaction between the polymers and fibrinogen at a microscopic scale, and showed that the polymer-rich domains of PMEA and PBA, as well as the water-rich domains of PBA, demonstrated an attraction force with fibrinogen. The water-rich domains of PMEA showed repulsion of fibrinogen rather than attraction. This suggests that the adsorbed fibrinogen on the PMEA interface is distributed in the polymer- rather than water-rich domains. Rinsing with water decreased the amount of adsorbed fibrinogen, showing that it is easily desorbed from the PMEA surface, even in the polymer-rich domains. 

Future Studies

The different fibrinogen adsorption behaviours in the domains of the PMEA and PBA are thought to be due to the difference in polymer density and hydration structure. Moving forward, the plan is to look at the relationship between the polymer density and hydration structure, and protein adsorption and cell adhesion.

Why Choose ELGA LabWater in Japan?

The presence of impurities in laboratory water can be a major problem in research experiments, and can seriously compromise results. ELGA LabWater has been a trusted name in pure and ultrapure water since 1937. We believe in providing you with water purification solutions that can meet a wide range of needs and applications, backed by excellent service and support. For more information on our Type I ultrapure water systems, check out our PURELAB Quest, PURELAB Chorus 1 Complete and our PURELAB flex models.

Contact our Japanese partners today

Reference:

1.  Ueda T et al. 2018. Analysis of Interaction Between Interfacial Structure and Fibrinogen at Blood-Compatible Polymer/Water Interface. Front Chem 6:542. doi: 10.3389/fchem.2018.00542

risk whitepaper

When lives are at stake, there is no margin for error. Your clinical analyser must receive a constant and reliable supply of CLRW. 

Find out how to protect your test results

                   Click Here

 

Highlights

23 May 2022
Ensuring the quality of CBD oil
16 May 2022
When did he die? Paper-based micro-fluidic devices for forensic sciences
9 May 2022
Biodegradation- a Key Factor in Understanding the Fate of Chemicals in the Environment
2 May 2022
A new method for toxaphene analysis in marine animals
18 Apr 2022
Contamination of Food – an Ever-present Need for Analysis
11 Apr 2022
Occurrence of pesticides in Dutch drinking water sources
11 Apr 2022
Making the perfect cold brew coffee
4 Apr 2022
Abwasser von Nanopartikeln reinigen

Categories

  • Analytical Chemistry
  • Clinical & Pharma
  • Cool Science
  • Environment & Sustainability
  • Future Science
  • Life in The Lab
  • PURELAB Product Design
  • Science of the Future
  • Water In The Lab
  • Water Purity

Video

  • Enquiry
  • Get a Quote
  • Book a Demo
  • Find an Approved Partner

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Get a Quote

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Book a Demo

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Head Quarters

ELGA LabWater North America
5 Earl Ct Suite 100
Woodridge, IL 60517
USA

Tel: 630-343-5251

ELGA LabWater UK Head Quarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

Case Studies

  • Abbott Diagnostics
  • DASA Medical Diagnostics
  • NeoDIN Medical Institute
  • North Staffordshire NHS Trust
  • Olsberg Vocational College

Resources

  • Learn About Ultrapure Water
  • Guides and White Papers
  • Purification Technologies
  • Applications
  • Impurities In Water

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?
  • Language
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Other Veolia Sites
    • Veolia
    • Veolia Fondation
    • Veolia Water Technologies

© VWS (UK) Ltd. trading as ELGA LabWater. 2022 - All rights reserved.
ELGA is the global laboratory water brand name of Veolia.

  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum
Elga Veolia
TOP

© 2017 ELGA Veolia