Skip to main content
  • Where to buy
  • Company
    • About us
    • Careers
    • Events
  • Support
    • Laboratory Planning
    • Register a Product
    • Register Your Product (USA & Canada Only)
  • Contact
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
Home ELGA LabWater
  • Products
    • PURELAB
    • CENTRA
    • MEDICA
    • BIOPURE
    • ELGA Full Product Range
  • Applications
    • Atomic Absorption Spectroscopy
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
    • Case Studies
    • Ultrapure water
    • Guides and White Papers
  • Products
    • PURELAB
    • CENTRA
    • MEDICA
      • Hubgrade
      • MEDICA BIOX
    • BIOPURE
    • ELGA Full Product Range
      • PURELAB® Classic
  • Applications
    • Atomic Absorption Spectroscopy
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
      • Hochleistungsflüssigkeitschromatographie (HPLC)
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
      • Analytical Chemistry
      • Clinical & Pharma
      • Cool Science
      • Environment and sustainability
      • Life in the lab
      • Purelab product design
      • Science of the future
      • Water Purity
      • Water in the lab
    • Case Studies
      • Abbott Diagnostics chooses ELGA MEDICA systems in South Asia
      • Beam Me Up, Scotty: PURELAB® Option Q Delivers Essential Ultra Pure Water
      • Argenta chooses DKSH New Zealand to deliver Ultrapure water in Animal Pharma
      • Clean Water for a Clean Future
      • LS Scientific & ELGA deliver UltraPure water to the NAFDAC Laboratory
      • Lifebrain Group chooses ELGA as water partner for new modern 24/7 PCR-COVID-19 laboratory in Vienna, Austria.
      • Critital Tests Benefit from PURELAB® Option Reliable Pure Water
      • DASA: The biggest medical diagnostics company in Brazil
      • ELGA helps immuneserology labs maximize uptime
      • Fondazione Telethon Continues to Choose ELGA Labwater as a Trusted Partner
      • Importance of ultrapure Type 1+ water for the development of generic medicines
      • MEDICA® Pro selected for Siemens ADVIA® analyzers at City General Hospital
      • Optimale Wasserqualität für mikrobiologische Forschung und Lehre
      • PURELAB® Option R Guarantees Pure Water for Leading Microfluidics Technology
      • PURELAB® Pulse Delivers Reliable Water Quality and Quantity for a Wide Range of Applications
      • PURELAB® flex: an ideal training system for today's research method
      • Powering Cutting-Edge Gene Research
      • Sichere Reinstwasserversorgung für präzise Produkttests
      • Zentrale Reinstwasser-Aufbereitung für Analyser
      • ELGA LabWater and Beckman Coulter Join Forces
      • Applied New Technologies Department Improves ICP, IC & HPLC Sample Turnaround Times with PURELAB®
      • Unlocking the secrets of the Antarctic with the aid of ultrapure water
      • Advancing Genetic Technologies
      • Cross Infection Control: Pure and Simple
      • Researching effective new ways to prevent cardiovascular disease at the University of Columbia
    • Ultrapure water
    • Guides and White Papers
      • HPLC Water Purity
      • HPLC in Pharma
      • Reducing Clinical Risks
      • Sustainability
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum

Let's talk about lab water

  • Categories
    • Analytical Chemistry
    • Clinical & Pharma
    • Cool Science
    • Environment & Sustainability
    • Future Science
    • Life in The Lab
    • PURELAB Product Design
    • Science of the Future
    • Water In The Lab
    • Water Purity
  • Authors
    • ELGA Editorial Team
    • Natasha Zarach
    • Dr Paul Whitehead
    • Dr Alison Halliday
    • John Walker
Environment & Sustainability

Biodegradation- a Key Factor in Understanding the Fate of Chemicals in the Environment

9 May 2022
- by ELGA Editorial Team

Biodegradation – a key factor in understanding the fate of chemicals in the environment

Biodegradation of chemicals in the environment is an important process governing the fate of waste chemicals and pollutants. Data on these processes are needed for risk assessment and regulation of chemicals. Biodegradation is a complex process that depends on the chemicals, the microbial community, and many environmental factors. (1)  Standardized biodegradation screening tests have existed for a number of years but, more recently, interest in the differences between standard tests and the more complex conditions in the real world has increased.  (2,3) The real environment is characterized by the presence of complex microbial communities, multiple substrates, and xenobiotics at low concentrations. Although, the relationship between the concentration of a single substrate and growth of a degrader population has long been described (4) much less is known about the concentration effect on biodegradation kinetics for mixtures at very low chemical concentrations in complex microbial communities.

Birch and colleagues (5) have determined the primary biodegradation kinetics of mixtures of test chemicals at concentrations ranging from high (mg/L) to very low (ng/L) using a new biodegradation approach and targeted arrow solid phase microextraction (Arrow-SPME) coupled with GC–MS/MS analysis. It allows simultaneous testing of many hydrophobic and/or volatile chemicals including fragrances, plasticizers, UV filters, and polyaromatic hydrocarbons (PAHs).  Two hundred ninety-four parallel test systems were prepared using wastewater treatment plant effluent as inoculum and passive dosing to add a mixture of 19 chemicals at 6 initial concentration levels (ng/L to mg/L). Abiotic test systems were prepared at the same test chemical concentrations using ultrapure water instead of wastewater treatment plant effluent. After 1–30 days of incubation at 12 °C, the abiotic and biotic test systems were analyzed. Ultrapure water from a PURELAB flex was used throughout for the preparation of challenges and samples.

Automated sorptive enrichment was done directly on the unopened test systems using a 250 μm Arrow-SPME fibre immersed in the liquid for 60 min at 35 °C with continuous agitation immersion. The fibre was then thermally desorbed at 280 °C in the injector of a GC system. Separation was obtained on a 60 m × 250 μm × 0.25 μm DB-5 column. The oven temperature was ramped from 50 °C to 310 °C at 10 °C/min with a hold of 5 min. Detection with a triple quadrupole detector (MS/MS) used two sets of transitions from the precursor to product ion for each test chemical

 

The results confirmed that biodegradation is highly complex involving a whole variety of processes which depend on the individual chemical, its concentration, the overall carbon content and bacteria present in the media. The use of a simple, single number as a measure of biodegradability is problematic.  However, they showed that biodegradation tests on a mixture of chemicals can provide degradation kinetic data that are better aligned between chemicals and that are also highly relevant for surface waters that receive WWTP discharges containing a mixture of xenobiotics. The study provides new evidence that the mixture concentration can affect the biodegradation kinetics of the mixture constituents, but in different ways for different types of constituent, as shown in the figures, and that the concentration and type of chemicals also affects the microbial composition of the bacterial community. The chemical and microbial results confirm that high concentrations should be avoided when aiming at determining environmentally relevant biodegradation data. The biodegradation kinetics used for fate modelling and persistence assessment should preferably simulate environmental conditions as closely as possible; where other carbon sources are abundant lower test chemical concentrations should be used.


Why Choose ELGA LabWater?

The successful use of pure water from an ELGA PURELAB flex in these type of investigations demonstrates the advantages of pure water which is free from all types of impurity. For this work it had to be free of organic compounds or bacteria that could affect the tests directly but also inorganic or organic contaminants that might promote or change bacteria growth patterns and organic compounds that might change the carbon content of the media.


References

  1. Boethling, R.; Fenner, K.; Howard, P.; Klečka, G.; Madsen, T.; Snape, J. R.; Whelan, M. J. Environmental Persistence of Organic Pollutants: Guidance for Development and Review of POP Risk Profiles. Integr. Environ. Assess. Manage. 2009, 5, 539– 556,  DOI: 10.1897/ieam_2008-090.1 
  2. Martin, T. J.; Snape, J. R.; Bartram, A.; Robson, A.; Acharya, K.; Davenport, R. Environmentally Relevant Inoculum Concentrations Improve the Reliability of Persistent Assessments in Biodegradation Screening Tests. Environ. Sci. Technol. 2017, 51, 3065– 3073,  DOI: 10.1021/acs.est.6b05717 
  3. Li, Z.; McLachlan, M. S. Biodegradation of Chemicals in Unspiked Surface Waters Downstream of Wastewater Treatment Plants. Environ. Sci. Technol. 2019, 53, 1884– 1892,  DOI: 10.1021/acs.est.8b05191 
  4. Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371– 394,  DOI: 10.1146/annurev.mi.03.100149.002103 
  5. Birch H., Sjøholm K. K., Dechesne A., Sparham C., van Egmond R. and Mayer P. Biodegradation Kinetics of Fragrances, Plasticizers, UV Filters, and PAHs in a Mixture─Changing Test Concentrations over 5 Orders of Magnitude Environ. Sci. Technol. 2021, XXXX, XXX, XXX-XXX December 22, 2021 https://doi.org/10.1021/acs.est.1c05583
PURELAB family range - configure your system now

Discover PURELAB Chorus

Check out our quick, simple, easy and fun way to configure your lab water system and receive your personalized brochure

          Configure your solution today

Highlights

23 May 2022
Ensuring the quality of CBD oil
16 May 2022
When did he die? Paper-based micro-fluidic devices for forensic sciences
9 May 2022
Biodegradation- a Key Factor in Understanding the Fate of Chemicals in the Environment
2 May 2022
A new method for toxaphene analysis in marine animals
18 Apr 2022
Contamination of Food – an Ever-present Need for Analysis
11 Apr 2022
Occurrence of pesticides in Dutch drinking water sources
11 Apr 2022
Making the perfect cold brew coffee
4 Apr 2022
Abwasser von Nanopartikeln reinigen

Categories

  • Analytical Chemistry
  • Clinical & Pharma
  • Cool Science
  • Environment & Sustainability
  • Future Science
  • Life in The Lab
  • PURELAB Product Design
  • Science of the Future
  • Water In The Lab
  • Water Purity

Video

  • Enquiry
  • Get a Quote
  • Book a Demo
  • Find an Approved Partner

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Get a Quote

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Book a Demo

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Head Quarters

ELGA LabWater North America
5 Earl Ct Suite 100
Woodridge, IL 60517
USA

Tel: 630-343-5251

ELGA LabWater UK Head Quarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

Case Studies

  • Abbott Diagnostics
  • DASA Medical Diagnostics
  • NeoDIN Medical Institute
  • North Staffordshire NHS Trust
  • Olsberg Vocational College

Resources

  • Learn About Ultrapure Water
  • Guides and White Papers
  • Purification Technologies
  • Applications
  • Impurities In Water

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?
  • Language
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Other Veolia Sites
    • Veolia
    • Veolia Fondation
    • Veolia Water Technologies

© VWS (UK) Ltd. trading as ELGA LabWater. 2022 - All rights reserved.
ELGA is the global laboratory water brand name of Veolia.

  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Impressum
Elga Veolia
TOP

© 2017 ELGA Veolia