Skip to main content
Home

Dedicated to discovery

  • Company
    • About us
    • Careers
    • Events
  • Support
    • Laboratory Planning
    • Register a Product
    • Register Your Product (USA & Canada Only)
  • Contact
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
Home
  • Products
    • PURELAB®
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 2 +
      • PURELAB® Chorus 3
      • PURELAB® flex 1
      • PURELAB® flex 2
      • PURELAB® flex 3
      • PURELAB® flex 4
      • PURELAB® flex 5
    • CENTRA®
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA®
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE®
      • BIOPURE® 300/600
    • ELGA Full Product Range
  • Applications
    • Atomic Absorption Spectroscopy
    • Cell and Tissue Culture
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
    • Case Studies
    • Ultrapure water
    • Guides and White Papers
  • Where to buy
  • Contact us
Home
  • Contact us
  • Products
    • PURELAB®
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 2 +
      • PURELAB® Chorus 3
      • PURELAB® flex 1
      • PURELAB® flex 2
      • PURELAB® flex 3
      • PURELAB® flex 4
      • PURELAB® flex 5
    • CENTRA®
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA®
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE®
      • BIOPURE® 300/600
    • ELGA Full Product Range
  • Applications
    • Atomic Absorption Spectroscopy
    • Cell and Tissue Culture
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • Immunochemistry
    • Liquid Chromatography
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • Blog
    • Case Studies
    • Ultrapure water
    • Guides and White Papers
  • Where to buy
  • Contact us
  • Company
    • About us
    • Careers
    • Events
  • Support
    • Laboratory Planning
    • Register a Product
    • Register Your Product (USA & Canada Only)
  • Contact
  • U.S.A.
  • Deutschland
  • España
  • France
  • Italia
  • Brasil
  • 日本
  • 中国
  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Trademarks
  • Impressum

Let's talk about lab water

  • Categories
    • Analytical Chemistry
    • Biotechnology
    • Clinical & Pharma
    • Cool Science
    • Environment & Sustainability
    • Future Science
    • Life in The Lab
    • Life Science Results
    • PURELAB Product Design
    • Science of the Future
    • Water In The Lab
    • Water Purity
  • Authors
    • ELGA Editorial Team_cloned
    • ELGA Editorial Team
    • Natasha Zarach
    • Dr Paul Whitehead
    • Dr Alison Halliday
    • John Walker
Environment & Sustainability

Biodegradation- a Key Factor in Understanding the Fate of Chemicals in the Environment

9 May 2022
- by ELGA Editorial Team

Biodegradation – a key factor in understanding the fate of chemicals in the environment

Biodegradation of chemicals in the environment is an important process governing the fate of waste chemicals and pollutants. Data on these processes are needed for risk assessment and regulation of chemicals. Biodegradation is a complex process that depends on the chemicals, the microbial community, and many environmental factors. (1)  Standardized biodegradation screening tests have existed for a number of years but, more recently, interest in the differences between standard tests and the more complex conditions in the real world has increased.  (2,3) The real environment is characterized by the presence of complex microbial communities, multiple substrates, and xenobiotics at low concentrations. Although, the relationship between the concentration of a single substrate and growth of a degrader population has long been described (4) much less is known about the concentration effect on biodegradation kinetics for mixtures at very low chemical concentrations in complex microbial communities.

Birch and colleagues (5) have determined the primary biodegradation kinetics of mixtures of test chemicals at concentrations ranging from high (mg/L) to very low (ng/L) using a new biodegradation approach and targeted arrow solid phase microextraction (Arrow-SPME) coupled with GC–MS/MS analysis. It allows simultaneous testing of many hydrophobic and/or volatile chemicals including fragrances, plasticizers, UV filters, and polyaromatic hydrocarbons (PAHs).  Two hundred ninety-four parallel test systems were prepared using wastewater treatment plant effluent as inoculum and passive dosing to add a mixture of 19 chemicals at 6 initial concentration levels (ng/L to mg/L). Abiotic test systems were prepared at the same test chemical concentrations using ultrapure water instead of wastewater treatment plant effluent. After 1–30 days of incubation at 12 °C, the abiotic and biotic test systems were analyzed. Ultrapure water from a PURELAB flex was used throughout for the preparation of challenges and samples.

Automated sorptive enrichment was done directly on the unopened test systems using a 250 μm Arrow-SPME fibre immersed in the liquid for 60 min at 35 °C with continuous agitation immersion. The fibre was then thermally desorbed at 280 °C in the injector of a GC system. Separation was obtained on a 60 m × 250 μm × 0.25 μm DB-5 column. The oven temperature was ramped from 50 °C to 310 °C at 10 °C/min with a hold of 5 min. Detection with a triple quadrupole detector (MS/MS) used two sets of transitions from the precursor to product ion for each test chemical

 

The results confirmed that biodegradation is highly complex involving a whole variety of processes which depend on the individual chemical, its concentration, the overall carbon content and bacteria present in the media. The use of a simple, single number as a measure of biodegradability is problematic.  However, they showed that biodegradation tests on a mixture of chemicals can provide degradation kinetic data that are better aligned between chemicals and that are also highly relevant for surface waters that receive WWTP discharges containing a mixture of xenobiotics. The study provides new evidence that the mixture concentration can affect the biodegradation kinetics of the mixture constituents, but in different ways for different types of constituent, as shown in the figures, and that the concentration and type of chemicals also affects the microbial composition of the bacterial community. The chemical and microbial results confirm that high concentrations should be avoided when aiming at determining environmentally relevant biodegradation data. The biodegradation kinetics used for fate modelling and persistence assessment should preferably simulate environmental conditions as closely as possible; where other carbon sources are abundant lower test chemical concentrations should be used.


Why Choose ELGA LabWater?

The successful use of pure water from an ELGA PURELAB flex in these type of investigations demonstrates the advantages of pure water which is free from all types of impurity. For this work it had to be free of organic compounds or bacteria that could affect the tests directly but also inorganic or organic contaminants that might promote or change bacteria growth patterns and organic compounds that might change the carbon content of the media.


References

  1. Boethling, R.; Fenner, K.; Howard, P.; Klečka, G.; Madsen, T.; Snape, J. R.; Whelan, M. J. Environmental Persistence of Organic Pollutants: Guidance for Development and Review of POP Risk Profiles. Integr. Environ. Assess. Manage. 2009, 5, 539– 556,  DOI: 10.1897/ieam_2008-090.1 
  2. Martin, T. J.; Snape, J. R.; Bartram, A.; Robson, A.; Acharya, K.; Davenport, R. Environmentally Relevant Inoculum Concentrations Improve the Reliability of Persistent Assessments in Biodegradation Screening Tests. Environ. Sci. Technol. 2017, 51, 3065– 3073,  DOI: 10.1021/acs.est.6b05717 
  3. Li, Z.; McLachlan, M. S. Biodegradation of Chemicals in Unspiked Surface Waters Downstream of Wastewater Treatment Plants. Environ. Sci. Technol. 2019, 53, 1884– 1892,  DOI: 10.1021/acs.est.8b05191 
  4. Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371– 394,  DOI: 10.1146/annurev.mi.03.100149.002103 
  5. Birch H., Sjøholm K. K., Dechesne A., Sparham C., van Egmond R. and Mayer P. Biodegradation Kinetics of Fragrances, Plasticizers, UV Filters, and PAHs in a Mixture─Changing Test Concentrations over 5 Orders of Magnitude Environ. Sci. Technol. 2021, XXXX, XXX, XXX-XXX December 22, 2021 https://doi.org/10.1021/acs.est.1c05583
PURELAB family range - configure your system now

Discover PURELAB Chorus

Check out our quick, simple, easy and fun way to configure your lab water system and receive your personalized brochure

          Configure your solution today

Explore more from our blog

23 May 2023
The importance of lab biosafety
16 May 2023
Harnessing the power of nanotechnology for wound healing
15 May 2023
Monitoring drug adherence in leukaemia
3 May 2023
Reinstwasser für Pharma QC-Labore: Das sind die drei größten Herausforderungen
14 Apr 2023
Monitoring patients on cholesterol-lowering drugs
10 Apr 2023
Inhaled ‘fat bubbles’ to deliver lung cancer drug
27 Mar 2023
How does a plant-based diet affect the mineral content of breast milk?
9 Mar 2023
Identifying antibacterial compounds in industrial hemp

Blog Categories

  • Analytical Chemistry
  • Biotechnology
  • Clinical & Pharma
  • Cool Science
  • Environment & Sustainability
  • Future Science
  • Life in The Lab
  • Life Science Results
  • PURELAB Product Design
  • Science of the Future
  • Water In The Lab
  • Water Purity
  • Enquiry
  • Get a Quote
  • Book a Demo
  • Find an Approved Partner

Enquiry

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Get a Quote

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Book a Demo

Please check this to confirm that you have read our Terms of Service and Privacy Policy.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Headquarters

ELGA LabWater North America
5 Earl Ct Suite 100
Woodridge, IL 60517
USA

Tel: 630-343-5251

ELGA LabWater UK Headquarters

Lane End Business Park
Lane End, High Wycombe
HP14 3BY
United Kingdom
T: +44 (0) 203 567 7300
F: +44 (0) 203 567 7205

Case Studies

  • Abbott Diagnostics
  • DASA Medical Diagnostics
  • NeoDIN Medical Institute
  • North Staffordshire NHS Trust
  • Olsberg Vocational College

Resources

  • Learn About Ultrapure Water
  • Guides and White Papers
  • Purification Technologies
  • Applications
  • Impurities In Water

Blogs

  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. trading as ELGA LabWater. 2023 - All rights reserved.
ELGA is the global laboratory water brand name of Veolia.

  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Trademarks
  • Impressum
  • Language
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Other Veolia Sites
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia